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LETTER TO THE EDITOR 

Lie symmetries for the charge-monopole problem 

I C Moreira, 0 M Ritter and F C Santos 
Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, C E P  
21944, Rio de Janeiro, Brasil 

Received 8 February 1985 

Abstract. In this letter we obtain the Lie symmetries for the equation of motion of an 
electric charge interacting with a magnetic monopole, fixed at the origin. We also discuss 
the construction of first integrals for this problem. 

In recent years there has been a revival of interest in the analysis of the continuous 
symmetries of differential equations (the so-called Lie symmetries), especially for the 
nonlinear wave equations. The knowledge of these symmetries is an important step 
in finding particular solutions of nonlinear equations and for the identification of 
conservation laws (Ovsjannikov 1982, Bluman and Cole 1974). Several papers in this 
journal have been dedicated also to discuss the Lie symmetries for some important 
discrete physical systems described by ordinary differential equations: Wulfman and 
Wybourne (1976) found the Lie symmetry group for the simple harmonic oscillator; 
Prince and Eliezer (1980, 1981) did the same for the time-dependent oscillator and 
for the Kepler problem. Similar problems have been considered by other authors 
(Leach 1981, Moreira 1983). 

Here we consider the equation of motion: 

where p = eg/mc,  that describes the motion of an electric charge e in the field of a 
magnetic monopole g, fixed at the origin. 

The classical solution of this equation was established by PoincarC (1896); he 
showed that the trajectory of the charge is over a cone with the apex at the origin. 
The direction of the axis of the cone is given by the generalised angular momentum: 

eg r 
7 = r x p  -- -. 

c r  

Dirac (1931) has considered this problem from a quantum mechanical point of 
view and has found the important relation eg =;@A,  p being an integer, concerning 
the quantisation of the electric and magnetic charge. 

The general conditions (Lie 1896) for the invariance of an equation 
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under the infinitesimal transformations 

x, + x: = x, + &T1(X, t )  

t+t’=t+E[(X, t )  

are 

U”A, = 0 

where the second extended operator U” is given by 

a a a a 
U”= 6-+ V I - +  77; -+ 77; - 

a t  ax, ax, a i ,  

with 

The application of the conditions ( 5 )  to equation ( 1 )  leads to a system of 36 linear 
partial differential equations whose solution leads to the following independent 
generators: 

a 
X, =- 

a t  

a a a a  x2= 2r-+x-+y-+z- 
a t  ax ay a z  

x3 = t* - + t x - + y - + z -  
a t  a ( a i  a; az a )  
a a  x, = y- - x- 

ax ay 

a a  

a a  
ay az‘ x 6 -  - z - - y -  

The Lie algebra associated with these operators is given by the commutators: 

[XI, 4 x 2 1  =XI [fxz, x3l= x3 [XI, X3I = X2 

rX4, x51  = x6 r x4, x6i = x5 r X 5 ,  x6l= -x4 ( 9 )  

[X,, X,I = 0 for the other cases. 

This algebra is a direct sum of the subalgebra {X,, X 2 ,  X3} that corresponds to the 
SO(2, 1) group and of the subalgebra {X4, X 5 ,  x6) corresponding to the SO(3) group. 
Therefore SO(2, 1 )  x SO(3) is the Lie symmetry group for the equation ( 1 ) .  
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We can find first integrals for the equation (1) from the knowledge of the Lie 
symmetries. A direct way to do this is to apply the first extended operator (Lutzky 1979) 

a a a 
U’= (-+ v i -+  7: - 

a t  ax, a i i  
to a first integral to get a new constant: 

U ’ I ,  = 12. (11) 

In our case if we start from the conservation of the kinetic energy I ,  =+mu2 
(obviously conserved for a force of this kind) we get: 

U k , I ,  = 0 Uk2I1 = -211 
2 Uk3 I ,  = r - U - tv = 12. 

If we apply again these extended operators to 12, we get 

U&, I2 = -21 I 

u ~ , I ~  = ( r  - ut)’ = I,. 

UL2I2 = 0 

Similarly the components of the generalised angular momentum T can be obtained 
by applying U&3,x,,xs to any component of this vector. With these constants of motion 
the trajectory of the charge can be completely determined. 

An alternative method introduced by Prince and Eliezer (1981) permits the construc- 
tion of first integrals starting from the symmetry generators. This procedure could be 
used also in this case to determine (2), (12) and f13). 

The analysis of the symmetries and the construction of the first integrals for the 
charge-monopole problem can be made by several approaches. Jackiw ( 1980) applied 
the Noether theorem to a Lagrangian with a singular potential to get the dynamical 
symmetry group [S0(3) x SO(2, l)]; he has used symmetry transformations with linear 
dependence in velocity. Another possibility would be to try a generalisation of the 
Noether theorem within the formulation of Wu and Yang (1976) for the charge- 
monopole interaction. In order to circumvent the singularity problem they divided 
the space outside the monopole into two overlapping regions R,  and Rb and defined 
singularity-free electromagnetic potentials in R, and Rb. In a third approach to this 
problem we can use the formalism introduced by Sokolov (1976): he wrote a Lagrangian 
in a four-dimensional space (where the coordinates are the three Euler angles and the 
separation between the charge and the monopole), and with this procedure he avoids 
the difficulties arising from the singularity of the potential. A direct application of the 
Noether theorem to this Lagrangian gives us the same symmetry transformations and 
the first integrals I , ,  I2  and I,. The approach used here by applying the Lie symmetries 
avoids the utilisation of singular potentials, of a multiple-valued action integral or the 
introduction of additional variables. Of course in the quantisation of the system we 
must make use of one of these Hamiltonian approaches. 
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